WebOverview. Our method for knowledge distillation has a few different steps: training, computing layer statistics on the dataset used for training, reconstructing (or optimizing) a new dataset based solely on the trained model and the activation statistics, and finally distilling the pre-trained "teacher" model into the smaller "student" network. WebInstead, you can train a model from scratch as follows. python train_scratch.py --model wrn40_2 --dataset cifar10 --batch-size 256 --lr 0.1 --epoch 200 --gpu 0. 2. Reproduce our results. To get similar results of our method on CIFAR datasets, run the script in scripts/fast_cifar.sh. (A sample is shown below) Synthesized images and logs will be ...
GitHub - zju-vipa/Fast-Datafree: [AAAI-2024] Up to 100x …
WebJan 5, 2024 · We present DeepInversion for Object Detection (DIODE) to enable data-free knowledge distillation for neural networks trained on the object detection task. From a data-free perspective, DIODE synthesizes images given only an off-the-shelf pre-trained detection network and without any prior domain knowledge, generator network, or pre … WebDec 29, 2024 · Moreover, knowledge distillation was applied to tackle dropping issues, and a student–teacher learning mechanism was also integrated to ensure the best performance. ... The main improvements are in terms of the lightweight backbone, anchor-free detection, sparse modelling, data augmentation, and knowledge distillation. The … each initiative
(PDF) FedDTG:Federated Data-Free Knowledge Distillation via …
WebJan 25, 2024 · Data-free distillation is based on synthetic data in the absence of a training dataset due to privacy, security or confidentiality reasons. The synthetic data is usually generated from feature representations of the pre-trained teacher model. ... Knowledge distillation was applied during the pre-training phase to obtain a distilled version of ... WebApr 14, 2024 · Human action recognition has been actively explored over the past two decades to further advancements in video analytics domain. Numerous research studies have been conducted to investigate the complex sequential patterns of human actions in video streams. In this paper, we propose a knowledge distillation framework, which … Webmethod for data-free knowledge distillation, which is able to compress deep neural networks trained on large-scale datasets to a fraction of their size leveraging only some extra metadata to be provided with a pretrained model release. We also explore different kinds of metadata that can be used with our method, and discuss each infinity stone power